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Abstract. We conjecture that, because of color confinement, the physical vacuum forms an event horizon
for quarks and gluons, which can be crossed only by quantum tunneling, i.e., through the QCD counter-
part of Hawking radiation at black holes. Since such radiation cannot transmit information to the outside, it
must be thermal, of a temperature determined by the chromodynamic force at the confinement surface, and
it must maintain color neutrality. We explore the possibility that the resulting process provides a common
mechanism for thermal hadron production in high energy interactions, from e+e− annihilation to heavy ion
collisions.
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1 Introduction

The aim of this paper is to develop a conceptual framework
for a universal form of thermal multihadron production in
high energy collisions. Our work is based on two seemingly
disjoint observations.

– Color confinement in QCD does not allow colored con-
stituents to exist in the physical vacuum, and thus in
some sense creates a situation similar to the gravita-
tional confinement provided by black holes.
– Numerous high energy collision experiments have pro-
vided strong evidence for the thermal nature of mul-
tihadron production, indicating a universal hadroniza-
tion temperature TH � 150–200MeV.

We want to suggest that quantum tunneling through
a color event horizon, as a QCD counterpart of Hawking–
Unruh radiation from black holes, can relate these obser-
vations in a quite natural way.
The idea that the color confinement of quarks and glu-

ons in hadrons may have a dual description in terms of
a theory in curved space-time is not new. Both gravita-
tional confinement of matter inside a black hole [1] and the
de Sitter solution of the Einstein equations with a cosmo-
logical constant describing a “closed” universe of constant
curvature [2, 3] have been proposed as possible descriptions
of quark confinement. Soon it became clear that asymp-
totic freedom [4, 5] and the scale anomaly [6–11] in QCD
completely determine the structure of low-energy gluody-
namics [12]. This effective theory can be conveniently for-
mulated in terms of the Einstein–Hilbert action in a curved
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background. At shorter distances (inside hadrons), the ef-
fective action has the form of classical Yang–Mills theory
in a curved (but conformally flat) metric [13, 14]. The “cos-
mological constant” present in this theory corresponds to
the non-perturbative energy density of the vacuum, or the
“gluon condensate” [15].
It is worthwhile to also mention here the well-known

conjectured holographic correspondence between the large
N limit of supersymmetric Yang–Mills theory in 3+1 di-
mensions and supergravity in an anti-de Sitter space-time
sphere, AdS5×S5 [16]. This example illustrates the pos-
sible deep relation between Yang–Mills theories and grav-
ity; however, a conformal theory clearly differs from the
examples noted above, in which the scale anomaly (de-
scribing the breaking of conformal invariance by quantum
effects) was used as a guiding principle for constructing an
effective curved space-time description.
Let us assume that color confinement indeed allows for

a dual description in terms of the gravitational confine-
ment of matter inside black holes. What are the implica-
tions of this hypothesis for hadronic physics? Hawking [17]
showed that black holes emit thermal radiation due to
quantum tunneling through the event horizon. Shortly af-
terwards, Unruh [18] demonstrated that the presence of an
event horizon in accelerating frames also leads to thermal
radiation. It was soon conjectured that the periodic motion
of quarks in a confining potential [19], or the acceleration
which accompanies inelastic hadronic collisions [20–22],
are associated with an effective temperature for hadron
emission.
Recently, a QCD-based picture of thermal production

based on the parton description of high energy hadronic
collisions has been proposed [23–25]. The effective tem-
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perature T is in this case determined either by the string
tension σ, with the relation

T =

√
3σ

4π
, (1)

or, in the gluon saturation regime, by the saturation mo-
mentumQs describing the strength of the color fields in the
colliding hadrons or nuclei, with T � (Qs/2π).
Turning now to the second observation, we recall that

over the years, hadron production studies in a variety of
high energy collision experiments have shown a remark-
ably universal feature. From e+e− annihilation to p–p and
p–p̄ interactions and further to collisions of heavy nuclei,
with energies from a few GeV up to the TeV range, the
production pattern always shows striking thermal aspects,
connected to an apparently quite universal temperature
around TH � 150–200MeV [26, 27]. As a specific illustra-
tion we recall that the relative abundance of two hadron
species a and b, of masses ma and mb, respectively, is
essentially determined by the ratio of their Boltzmann
factors [28–32],

R(a/b)∼ exp−{(ma−mb)/TH} . (2)

What is the origin of this thermal behavior?While high en-
ergy heavy ion collisions involve large numbers of incident
partons and thus could allow for invoking some “thermal-
ization” scheme through rescattering, in e+e− annihilation
the predominant initial state is one energetic qq̄ pair, and
the number of hadronic secondaries per unit rapidity is too
small to consider statistical averages. The case in p–p/p–p̄
collisions is similar.
This enigma has led to the idea that all such collision

experiments result in the formation of a strong color field
“disturbing” the physical vacuum. The disturbed vacuum
then recovers by producing hadrons according to a max-
imum entropy principle: the actually observed final state
is that with the largest phase space volume. While this
provides an intuitive basis for a statistical description, it
does not account for a universal temperature. Why do not
more energetic collisions result in a higher hadronization
temperature?
A further piece in this puzzle is the observation that the

value of the temperature determined in the mentioned col-
lision studies is quite similar to the confinement/deconfine-
ment transition temperature found in lattice studies of
strong interaction thermodynamics1. While hadronization
in high energy collisions deals with a dynamical situation,
the energy loss of fast color charges “traversing” the phys-
ical vacuum, lattice QCD addresses the equilibrium ther-
modynamics of unbound versus bound color charges. Why
should the resulting critical temperatures be similar or
even identical?
We shall here consider these phenomena as reflections of

the QCD counterpart of the Hawking radiation emitted by
blackholes [17].These ultimate stellar states provide a grav-
itational form of confinement and hence, as already noted,

1 See e.g., [33] for the latest state and references to earlier
work.

their physics was quite soon compared to that of color con-
finement in QCD [1–3], where colored constituents are con-
fined to “white holes” (colorless from the outside, but col-
ored inside). It should be emphasized from the outset that
in contrast to the original black hole physics in gravitation,
where confinement is on a classical level complete, in QCD
confinement refers only to color-carrying constituents; thus,
e.g., photons or leptons are not affected.
In black hole physics, as noted above, it was shown that

the event horizon for systems undergoing uniform accelera-
tion leads to quantumtunneling andhence to thermal radia-
tion [18]. Our aimhere is to show that suchHawking–Unruh
radiation, as obtained in the specific situation of QCD, pro-
vides a viable account for the thermal behavior observed
in multihadron production by high energy collisions. Fur-
thermore, in the process we also want to elucidate a bit the
common origin of the “limiting temperature” concepts that
have arisen in strong interaction physics over the years.
We begin by reviewing those features of black hole

physics and Hawking radiation that are relevant for our
considerations and then discuss how they can be imple-
mented in QCD. In particular, we show that modifications
of the effective space-time structure, in a perturbative ap-
proach as well as in a non-perturbative treatment based on
a large-scale dilaton field, lead to an event horizon in QCD.
Following this, we present the main conceptual conse-

quences of our conjecture.

– Color confinement and the instability of the physical
vacuum under pair production form an event horizon
for quarks, allowing for a transition only through quan-
tum tunneling; this leads to thermal radiation of a tem-
perature TQ determined by the string tension.
– Hadron production in high energy collisions occurs
through a succession of such tunneling processes. The
resulting cascade is a realization of the same partition
process as leads to a limiting temperature in the statis-
tical bootstrap and dual resonance models.
– The temperature TQ of QCD Hawking–Unruh radia-
tion can depend only on the baryon number and the
angular momentum of the deconfined system. The for-
mer could provide a dependence of TQ on the baryon
number density, while the angular momentum pattern
of the radiation allows for a centrality dependence of TQ
and elliptic flow.
– In kinetic thermalization, the initial state information
is successively lost through collisions, converging to
a time-independent equilibrium state. In contrast, the
stochastic QCD Hawking radiation is “born in equilib-
rium”, since quantum tunneling a priori does not allow
for information transfer.

2 Event horizons in gravitation and in QCD

2.1 Black holes

A black hole is formed as the final stage of a neutron star
after gravitational collapse [37]. It has a mass M concen-
trated in such a small volume that the resulting gravita-
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tional field confines all matter and even photons to remain
inside the event horizonR of the system: no causal connec-
tion with the outside is possible. As a consequence, black
holes have three (and only three) observable properties:
massM , chargeQ and angular momentum J . This section
will address mainly black holes with Q = J = 0; we shall
come back to the more general properties in Sect. 4.We use
units of h̄= c= 1.
The event horizon appears in a study of the gravita-

tional metric, which in flat space has the form

ds2 = gdt2− g−1dr2− r2[dθ2+sin2 θdφ2] , (3)

using units where c= 1. The field strength of the interac-
tion is contained in the coefficient g(r),

g(r) =

(
1−
2GM

r

)
, (4)

leading back to the Minkowski metric in the large dis-
tance limit r→∞. The vanishing of g(r) specifies the
Schwarzschild radius R as the event horizon,

R = 2GM . (5)

It is interesting to note that the mass of a black hole
thus grows linearly with R, analogous to the behavior
of the confining potential in strong interactions: M(R) =
(2G)−1R.
Classically, a black hole would persist forever and re-

main forever invisible. On a quantum level, however, its
constituents (photons, leptons and hadrons) have a non-
vanishing chance to escape by tunneling through the bar-
rier presented by the event horizon. Equivalently, we can
say that the strong force field at the surface of the black
hole can bring vacuum fluctuations on-shell. The result-
ing Hawking radiation [17] cannot convey any information
about the internal state of the black hole; it must be there-
fore be thermal. For a non-rotating black hole of vanishing
charge (denoted as Schwarzschild black hole), the first law
of thermodynamics,

dM = T dS (6)

combined with the area law for the black hole entropy [38],

S =
πR2

G
(7)

leads to the corresponding radiation temperature

TBH =
1

8πGM
. (8)

This temperature is inversely proportional to the mass of
the black hole, and since the radiation reduces the mass,
the radiation temperature will increase with time, as the
black hole evaporates. For black holes of stellar size, how-
ever, one finds TBH � 2×10−8K, which is many orders of
magnitude below the 2.7 K cosmic microwave background,
and it hence is not detectable.

It is instructive to consider the Schwarzschild radius of
a typical hadron, assuming a massm∼ 1 GeV:

Rhadg � 1.3×10−38GeV−1 � 2.7×10−39 fm . (9)

To become a gravitational black hole, the mass of the
hadron would thus have to be compressed into a volume
more than 10100 times smaller than its actual volume, with
a radius of about 1 fm. On the other hand, if instead
we increase the interaction strength from gravitation to
strong interaction [1], we gain in the resulting “strong”
Schwarzschild radius Rhads a factor

αs

Gm2
, (10)

where αs is the dimensionless strong coupling andGm
2 the

corresponding dimensionless gravitational coupling for the
case in question. This leads to

Rhads �
2αs
m
; (11)

with the effective value of αs ∼O(1) we thus get Rhads ∼
O(1) fm.2 In other words, the confinement radius of a hadron
is about the size of its “strong” Schwarzschild radius, so
that we could consider quark confinement as the strong in-
teraction version of the gravitational confinement in black
holes [1–3].
We have seen that the mass of a black hole grows lin-

early with the event horizon, M = (1/2G)R, so that in
gravitation 1/2G plays the role of the string tension in
strong interaction physics. The replacement GM2→ αs
here leads to

σ �
m2

2αs
� 0.16GeV2 , (12)

if one uses the mentioned effective saturation value αs �
3 [39]. The value of αs ∼ 1 thus gives a reasonable string
tension as well as a reasonable radius.

2.2 Quasi-Abelian case

The appearance of an event horizon occurs in general rel-
ativity through the modification of the underlying space-
time structure by the gravitational interaction. Such mod-
ifications have also been discussed for other interactions.
In particular, it was noted that in electrodynamics, non-
linear in-medium effects can lead to photons propagating
along geodesics that are not null in Minkowski space-time;
this can even lead to photon trapping, restricting the mo-
tion of photons to a compact region of space [40]. Thus, an
effective Lagrangian L(F ) depending on a one-parameter
background field, F = FµνF

µν , results in a modified metric

gµν = ηµνL
′−4FαµF

α
ν L
′′ , (13)

2 In fact, some studies [39] indicate that at large distances,
the strong coupling freezes at αs � 3; in that case the corres-
ponding radius becomes Rhads � 1 fm.
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where the primes indicate first and second derivatives with
respect to F . Hence

g00 = L
′−4FL′′ = 0 (14)

defines the radius of the compact region of the theory, i.e.,
the counterpart of a black hole [40].
QCD is an inherently non-linear theory, with the phys-

ical vacuum playing the role of a medium [41]. The gen-
eral structure of the effective Lagrangian in a background
field F , compatible with gauge invariance, renormaliza-
tion group results [4, 5] and trace anomaly, has the unique
form [42–45]

LQCD =
1

4
FµνF

µν g
2(0)

g2(gF )
=
1

4
FµνF

µνε(gF ) . (15)

Here ε(gF ) is the dielectric “constant” of the system in
the presence of the background field; the F -dependence of
ε(F ) effectively turns the QCD vacuum into a non-linear
medium. On a one-loop perturbative level we have

ε(gF )� 1−β0

(
g2

4π

)
ln
Λ2

gF
, (16)

where β0 = (11Nc−2Nf)/48π2, withNc andNf specifying
the number of colors and flavors, respectively. Using this
form in the formalism of [40] leads to gt changing sign (i.e.,
gt = 0) at

gF ∗ = Λ2 exp
{
−4π/β0g

2
}
, (17)

indicating a possible horizon at r∗ ∼ 1/
√
gF ∗ [46]. It is

clear that this line of argument can at best provide some
hints, since we used the lowest order perturbative form of
the beta-function, even though at the horizon perturba-
tion theory will presumably break down. Nevertheless, we
believe that it suggests the possibility of an event horizon
for QCD; the crucial feature is the asymptotic freedom of
QCD [4, 5], which leads to ε < 1 and allows g00 to vanish
even without the external medium effects required in QED.

2.3 Non-Abelian case

Indeed, a different and more solid suggestion that in QCD
there is an event horizon comes from studying the theory
on a curved background. For gluodynamics, such a pro-
gram is discussed in [13, 14]. Classical gluodynamics is
a scale-invariant theory, but quantum fluctuations break
this invariance, with the trace of the energy-momentum
tensor introducing non-perturbative effects, associated
with the vacuum energy density εvac. It was shown [12] that
low-energy theorems can be used to determine the form of
the effective Yang–Mills Lagrangian in a curved but con-
formally flat metric

gµν(x) = ηµνe
h(x) , (18)

where the dilaton field h(x) is coupled to the trace of the
energy-momentum tensor, θµµ. The resulting action has the

form

S =

∫
d4x

×

[
4

3

εvac

m2G
eh(∂µh)

2−
1

4
(F aµν)

2+ e2h
(
εvac−

1

4
θµµ|pert

)]
;

(19)

here εvac is the absolute value of the energy density of the
vacuum and mG the dilaton mass; the trace of the energy-
momentum tensor has been separated into perturbative
and non-perturbative contributions,

θµµ = θ
µ
µ

∣∣
pert
+ 〈θµµ〉= θ

µ
µ

∣∣
pert
−4εvac . (20)

The crucial point for our considerations is that the first
term of (19) can be written as

3

2
eh (∂µh)

2
=R
√
−g , (21)

defining R as the Ricci scalar of the theory. Hence (19) has
the structure of an Einstein–Hilbert Lagrangian of gluody-
namics in the presence of an effective gravitation,

SG =∫
d4x

[√
−g

8πG
R−
1

4

(
F aµν
)2
+ e2h

(
εvac−

1

4
θµµ|pert

)]
;

(22)

where G is now given by

1

G
=
64π

3

εvac

m2G
. (23)

The relation 1/2G→ σ between G and the string tension
conjectured above then leads to

σ =
32π

3

εvac

m2G
. (24)

On the other hand, the string tension is just the energy
density of the vacuum times the transverse string area,

σ = εvacπr2T . (25)

Combining relations (24) and (25), we have

rT =

√
32

3

1

mG
� 0.4 fm , (26)

using mG � 1.5 GeV for the scalar glueball mass. Equa-
tion (26) thus gives us the transverse extension or horizon
of the string.
From (24) or (25) we can obtain a further consistency

check. Given the glueball mass and the string tension σ �
0.16GeV2, we find for the vacuum energy density

εvac �
3

32π
σm2G � 0.013GeV

4 � 1.7 GeV/fm3 . (27)
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This is the value for pure gluodynamics; since the energy
density is related to the trace of the energy-momentum
tensor by the relation (20), and

θµµ =
β(g)

2g

(
F aµν
)2
�−b

g2

32π2
(
F aµν
)2
, (28)

with the coefficient b= 11Nc−2Nf of the β-function, we
can estimate that for three-flavor QCD

εvacQCD =
11Nc−2Nf
11Nc

εvac =
9

11
εvac � 0.01 GeV4 , (29)

which is in perfect agreement with the original value of the
gluon condensate [15]

〈αs
π
G2
〉
� 0.012GeV4 ; (30)

note that εvacQCD = 27/32
〈
(αs/π)G

2
〉
.

3 Hyperbolic motion
and Hawking–Unruh radiation

In general relativity, the event horizon appeared as a con-
sequence of the geometrized gravitational force, but its
occurrence and its role for thermal radiation was soon
generalized by Unruh [18]. A system undergoing uniform
acceleration a relative to a stationary observer eventu-
ally reaches a classical turning point and thus encounters
an event horizon. Let us recall the resulting hyperbolic
motion3. A point massm subject to a constant force F sat-
isfies the equation of motion

d

dt

mv
√
1− v2

= F , (31)

where v(t) = dx/dt is the velocity, normalized to the speed
of light c = 1. This equation is solved by the parametric
form through the so-called Rindler coordinates,

x= ξ coshaτt= ξ sinh aτ , (32)

where a = F/m denotes the acceleration in the instan-
taneous rest frame of m, and τ the proper time, with
dτ =

√
1− v2dt. If we impose the boundary condition that

the velocity at t = 0 vanishes, we have ξ = 1/a and x(t =
0) = 1/a. The resulting world line is shown in Fig. 1. It cor-
responds to the mass m coming from x =∞ at t = −∞
with a velocity arbitrarily close to that of light, decelerat-
ing uniformly until it comes to rest at the classical turn-
ing point xH =−(1/a), t= 0. Subsequently, it accelerates
again and returns to x =∞ at t =∞, approaching the
speed of light. For given a, the light cone originating at
a distance xH = 1/a away from the turning point of m de-
fines a space-time region inaccessible to m: no photon in
this region can (classically) ever reachm, in much the same

3 For a clear discussion and references to the original solu-
tions by M. Born (1909) and A. Sommerfeld (1910), see [51].

Fig. 1. Hyberbolic motion

way as photons cannot escape from a black hole. Here the
acceleration is crucial, of course; if m stops accelerating, it
will eventually become visible in the “hidden region”.
The metric of such an accelerating system becomes in

spherical coordinates [47]

ds2 = ξ2a2dτ2− dξ2− ξ2 cosh2 aτ(dθ2+sin2 θdφ2) ,
(33)

which we want to compare to the black hole metric (3).
Making in the latter the coordinate transformation [48]

η =

√
g

κ
, (34)

where the surface gravity κ is given by

κ=
1

2

(
∂g

∂r

)
r=R

, (35)

we obtain for r→R the black hole form

ds2 = η2κ2dt2− dη2−R2(dθ2+ sin2θdφ2) . (36)

When we compare (33) and (36), it is evident that the sys-
tem in uniform acceleration can be mapped onto a spher-
ical black hole, and vice versa, provided we identify the
surface gravity κ with the acceleration a.
The vacuum through which m travels is, for a station-

ary observer, empty space. On a quantum level, however,
it contains vacuum fluctuations. The accelerating mass m
can bring these on-shell, using up a (small) part of its en-
ergy, so that form the vacuum becomes a thermal medium
of temperature

TU =
a

2π
. (37)

Consider such a fluctuation into an e+e− pair, flying apart
in opposite directions. One electron is absorbed by the
massm, the other penetrates into the “hidden region” and
can never be detected bym (see Fig. 2). Since thus neither
an observer on m nor a stationary observer in the hid-
den region can ever obtain access to full information, each
will register the observed radiation as thermal (Einstein–
Podolsky–Rosen effect [49, 50]). In other words: the accel-
erating mass m sees the vacuum as a physical medium of
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Fig. 2. Unruh radiation

temperature TU, while a stationary observer in the hid-
den region observes thermal radiation of temperature TU
as a consequence of the passing ofm.
We here also mention that the entropy in the case of an

accelerating system again becomes 1/4 of the event hori-
zon area, as in the black hole case, so that also here the
correspondence remains valid [52].
In the case of gravity, we have the force

F =ma=G
mM

R2
, (38)

on a probe of mass m. With R = 2GM for the (Schwarz-
schild) black hole radius, we have a = 1/(4GM) for the
acceleration at the event horizon and hence the Unruh
temperature (37) leads back to the Hawking temperature
of (8).
In summary, we note that constant acceleration leads to

an event horizon, which can be surpassed only by quantum
tunneling and at the expense of complete information loss,
leading to thermal radiation as the only resulting signal.

4 Pair production and string breaking

In the previous section, we have considered a classical ob-
ject, the mass m, undergoing accelerated motion in the
physical vacuum; because of quantum fluctuations, this
vacuum appears tom as a thermal medium of temperature
TU. In this section, we shall first address the modifications
that arise if the object undergoing accelerated motion is it-
self a quantum system, so that in the presence of a strong
field it becomes unstable under pair production. Next we
turn to the specific additional features that come in when
the basic constituents are subject to color confinement and
can only exist in color neutral bound states.
As a starting point, we consider two-jet e+e− annihila-

tion at CMS energy
√
s,

e+e−→ γ∗→ qq̄→ hadrons . (39)

The initially produced qq̄ pair flies apart, subject to the
constant confining force given by the string tension σ; this
results in hyperbolic motion [21] of the type discussed in

the previous section. At t = 0, the q and q̄ separate with
an initial velocity v0 = p/

√
p2+m2, where p�

√
s/2 is the

momentum of the primary constituents in the overall CMS
andm the effective quark mass. We now have to solve (31)
with this situation as boundary condition; the force

F = σ , (40)

is given by the string tension σ binding the qq̄ system. The
solution is

x̃=
[
1−
√
1− v0t̃+ t̃2

]
, (41)

with x̃= x/x0 and t̃= t/x0; here the scale factor

x0 =
m

σ

1√
1− v20

=
1

a
γ (42)

is the inverse of the acceleration a measured in the overall
CMS. The velocity becomes

v(t) =
dx

dt
=
(v0/2)− t̃√
1− v0t̃+ t̃2

; (43)

it vanishes for

t̃∗ =
v0

2
⇒ t∗ =

v0

2

m

σ
γ , (44)

thus defining

x(t∗) =
m

σ
γ

(
1−
√
1− (v20/4)

)
�

√
s

2σ
(45)

as classical turning point and hence as the classical event
horizon measured in the overall CMS (see Fig. 3).
Equation (45) allows the q and the q̄ to separate ar-

bitrarily far, provided the pair has enough initial energy;
this clearly violates color confinement. Our mistake was to
consider the qq̄ system as classical; in quantum field the-
ory, it is not possible to increase the potential energy of
a given qq̄ state beyond the threshold value necessary to
bring a virtual qq̄ pair on-shell. In QED, the corresponding
phenomenon was addressed by Schwinger [53], who showed
that in the presence of a constant electric field of strength
E the probability of producing an electron–positron pair is
given by

P (M, E)∼ exp
{
−πm2e/eE

}
, (46)

Fig. 3. Classical and quantum
horizons in qq̄ separation
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with me denoting the electron mass and e denoting the
electric charge. This result is in fact a specific case of
the Hawking–Unruh phenomenon, as shown in [23, 24]. In
QCD, we expect a similar effect when the string tension
exceeds the pair production limit, i.e., when

σx > 2m, (47)

where m specifies the effective quark mass. Beyond this
point, any further stretching of the string is expected to
produce a qq̄ pair with the probability

P (M,σ)∼ exp{−πm2/σ} , (48)

with the string tension σ replacing the electric field
strength eE . This string breaking acts like a quantum event
horizon xq = 2m/σ, which becomes operative long be-
fore the classical turning point is ever reached (see Fig. 3).
Moreover, the resulting allowed separation distance for our
qq̄ pair, the color confinement radius xQ, does not depend
on the initial energy of the primary quarks.
There are some important differences between QCD

and QED. In the case of the latter, the initial electric
charges, which lead to the field E , can exist independently
in the physical vacuum, and the produced pair can be sim-
ply ionized into an e+ and an e−. In contrast, neither the
primary quark nor the constituents of the qq̄ pair have
an independent existence, so that in string breaking color
neutrality must be preserved. As a result, the Hawking ra-
diation in QCD must consist of qq̄ pairs, and these can
be produced in an infinite number of different excitation
states of increasing mass and degeneracy. Moreover, the qq̄
pair spectrum is itself determined by the strength σ of the
field, in contrast to the exponent m2e/E in (46), where the
value of E has no relation to the electron massme.
Hadron production in e+e− annihilation is believed to

proceed in the form of a self-similar cascade [54, 55]. Ini-
tially, we have the separating primary qq̄ pair,

γ→ [qq̄] , (49)

where the square brackets indicate color neutrality. When
the energy of the resulting color flux tube becomes large
enough, a further pair q1q̄1 is excited from the vacuum by
two-gluon exchange (see Fig. 4),

γ→ [q[q̄1q1]q̄] . (50)

Fig. 4. String breaking through qq̄ pair production

Although the new pair is at rest in the overall CMS, each
of its constituents has a transverse momentum kT deter-
mined, through the uncertainty relation, by the transverse
dimension rT of the flux tube. The slow q̄1 now screens
the fast primary q from its original partner q̄, with an
analogous effect for the q1 and the primary antiquark. To
estimate the qq̄ separation distance at the point of pair
production, we recall that the thickness of the flux tube
connecting the qq̄ pair is in string theory given by [58]

rT =

√
2

πσ

K∑
k=0

1

k+1
, (51)

where K is the string length in units of an intrinsic vibra-
tion measure. Lattice studies [60] show that for strings in
the range of 1–2 fm, the first string excitation dominates,
so that we have

rT = c0

√
2

πσ
, (52)

with c0 � 1 or slightly larger. Higher excitations lead to
a greater thickness and eventually to a divergence (the
“roughening” transition). From the uncertainty relation
we then have

kT =
1

c0

√
πσ

2
. (53)

With this transverse energy included in (47), we obtain for
the pair production separation xQ

σxq = 2
√
m2+k2T⇒ xq �

2

σ

√
m2+(πσ/2c20)

�

√
2π

σc20
� 1 fm , (54)

with σ = 0.2GeV2,m2	 σ, and c0 � 1.
Once the new pair is present, we have a color neutral

system qq̄1q1q̄; but since there is a sequence of connecting
string potentials qq̄1, q̄1q1 and q1q̄, the primary string is not
yet broken. To achieve that, the binding of the new pair
has to be overcome, i.e., the q1 has to tunnel through the
barrier of the confining potential provided by q̄1, and vice
versa. Now the q exerts a longitudinal force on the q̄1, the
q̄ on the q1, resulting in a longitudinal acceleration and or-
dering of q1 and q̄1. When (see Fig. 4)

σx(q1q̄1) = 2
√
m2+k2T , (55)

the q̄1 reaches its q1q̄1 horizon; on the other hand, when

σx(qq̄1) = 2
√
m2+k2T , (56)

the new flux tube qq̄1 reaches the energy needed to produce
a further pair q2q̄2. The q̄2 screens the primary q from the
q1 and forms a new flux tube qq̄2. At this point, the original
string is broken, and the remaining pair q̄1q2 form a color
neutral bound state which is emitted as Hawking radia-
tion in the form of hadrons, with the relative weights of the
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different states governed by the corresponding Unruh tem-
perature. The resulting pattern is schematically illustrated
in Fig. 4.
To determine the temperature of the hadronic Hawk-

ing radiation, we return to the original pair excitation
process. To produce a quark of momentum kT, we have
to bring it on-shell and change its velocity from zero to
v = kT/(m

2+k2T)
1/2 � 1. This has to be achieved in the

time of the fluctuation determined by the virtuality of the
pair, ∆τ = 1/∆E � 1/2kT. The resulting acceleration thus
becomes

a=
∆v

∆τ
� 2kT �

√
2πσ/c0 � 1 GeV , (57)

which leads to

TQ =
a

2π
�
1

c0

√
σ

2π
� 160–180MeV , (58)

for the hadronic Unruh temperature. It governs the mo-
mentum distribution and the relative species abundances
of the emitted hadrons.
A given step in the evolution of the hadronization cas-

cade of a primary quark or antiquark produced in e+e−

annihilation thus involves several distinct phenomena. The
color field created by the separating q and q̄ produces a fur-
ther pair q1q̄1 and then provides an acceleration of the q1,
increasing its longitudinal momentum.When it reaches the
q1q̄1 confinement horizon, still another pair q2q̄2 is excited;
the state q̄1q2 is emitted as a hadron, the q̄2 forms together
with the primary q a new flux tube. This pattern thus step
by step increases the longitudinal momentum of the “ac-
companying” q̄i as well as of the emitted hadron. This, to-
gether with the energy of the produced pairs, causes a cor-
responding deceleration of the primary quarks q and q̄, in
order to maintain overall energy conservation. In Fig. 5, we
show the world lines given by the acceleration q̄i→ q̄i+1
(qi → qi+1) and the formation threshold of the hadrons
q̄iqi+1 and the corresponding antiparticles.
The energy loss and deceleration of the primary quark

q in this self-similar cascade, together with the accelera-
tion of the accompanying partner q̄i from the successive
pairs brings q and q̄i closer and closer to each other in
momentum, from an initial separation qq̄1 of

√
s/2, until

they finally are combined into a hadron and the cascade is
ended. The resulting pattern is shown in Fig. 6.
The number of emitted hadrons, the multiplicity ν(s),

follows quite naturally from the picture presented here.

Fig. 5. Quark acceleration and hadronization world lines

Fig. 6. Hadronization in e+e− annihilation

The classical string length, in the absence of quantum pair
formation, is given by the classical turning point deter-
mined in (45). The thickness of a flux tube of such an “over-
stretched” string is known [58]; instead of (51) we have

R2T =
2

πσ

K∑
k=0

1

2k+1
�
2

πσ
ln 2K , (59)

whereK was the string length in units of an intrinsic string
vibration measure. From (45) we thus get

R2T �
2

πσ
ln
√
s (60)

for the flux tube thickness in the case of the classical string
length. In parton language, the logarithmic growth of the
transverse hadron size is due to a random walk of the par-
ton (“Gribov diffusion” [59]); this phenomenon is respon-
sible for diffraction cone shrinkage in high energy hadron
scattering.
Because of pair production, the string breaks whenever

it is stretched to the length xq given in (54); its thickness
rT at this point is given by (51). The multiplicity can thus
be estimated by the ratio of the corresponding classical to
quantum transverse flux tube areas,

ν(s) ∼
R2T
r2T
∼ ln
√
s , (61)

and it is found to grow logarithmically with the e+e− an-
nihilation energy, as is observed experimentally over a con-
siderable range.
We note here that in our argumentation we have neg-

lected parton evolution, which would cause the emitted
radiation (e.g., q̄1q2 in Fig. 4) to start another cascade of
the same type. Such evolution effects result eventually in
a stronger increase of the multiplicity. The formation of
a white hole does not affect the production of hard pro-
cesses at early times (e.g., multiple jet production), which
is responsible for an additional growth of the measured
multiplicity.
A further effect we have not taken into account here

is parton saturation. At sufficiently high energy, stronger
color fields can lead to gluon saturation and thus to
a higher temperature determined by the saturation mo-
mentum [23, 24]. The resulting system then expands and
hadronizes at the universal temperature determined by the
string tension.
It interesting to compare the separation of two ener-

getic light quarks, as we have considered here, with that of
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two static heavy quarks Q and Q̄. From quarkonium stud-
ies it is known that

2(MD−mc)� 2(MB−mb)� 1.2GeV , (62)

where MD (MB) and mc (mb) are the masses of open
charm (beauty) mesons and of the corresponding charm
(beauty) quarks, respectively. The energy needed to sepa-
rate a heavyQQ̄ pair thus is independent of the mass of the
heavy quarks, indicating that the string breaking involved
here is really a consequence of the vacuum, through qq̄ pair
excitation. With

σxQ � 1.2 GeV⇒ xQ � 1.2 fm (63)

we find that the resulting separation threshold for pair ex-
citation agrees well with that found above in (54). Lattice
QCD studies lead to similar results.
Up to now, we have considered hadron production in

e+e− annihilation, in which the virtual photon produces
a confined colored qq̄ pair as a “white hole”. Turning now
to hadron–hadron collisions, we note that here two incident
white holes combine to form a new system of the same kind,
as schematically illustrated in Fig. 7. Again the resulting
string or strong color field produces a sequence of qq̄ pairs
of increasing CMS momentum, leading to the well-known
multiperipheral hadroproduction cascade shown in Fig. 8.
We recall here the comments made above concerning par-
ton evolution and saturation; in hadronic collisions as well,
these phenomena will affect the multiplicity, but not the
relative abundances.
In the case of heavy ion collisions, two new elements

enter. The resulting systems could now have an overall

Fig. 7. “White hole”
structure in e+e− anni-
hilation a and hadronic
collisions b

Fig. 8. Hadronization
in hadron–hadron colli-
sions

baryon number, up to B = 400 or more. To take that into
account, we need to consider the counterpart of charged
black holes. Furthermore, in heavy ion collisions the re-
sulting hadron production can be studied as a function of
centrality, and peripheral collisions could lead to an inter-
action region with an effective overall angular momentum.
Hence we will also consider rotating black holes. In the next
section, we then summarize the relevant features of black
holes with Q 
= 0, J 
= 0.

5 Charged and rotating black holes

As mentioned, for an outside observer the only character-
istics of a black hole are its mass M , its electric charge
Q, and its spin or angular momentum J . Hence any fur-
ther observables, such as the event horizon or the Hawking
temperature, must be expressible in terms of these three
quantities.
The event horizon of a black hole is created by the

strong gravitational attraction, which leads to a diverg-
ing Schwarzschild metric at a certain value of the spatial
extension R. Specifically, the invariant space-time length
element ds2 is at the equator given by

ds2 = (1−2GM/R)dt2−
1

1−2GM/R
dr2 , (64)

with r and t for flat space and time coordinates; it is
seen to diverge at the Schwarzschild radius RS = 2GM .
If the black hole has a net electric charge Q, the result-
ing Coulomb repulsion will oppose and hence weaken the
gravitational attraction; this will in turn modify the event
horizon. As a result, the corresponding form (denoted as
Reissner–Nordströmmetric) becomes

ds2 = (1−2GM/R+GQ2/R2)dt2

−
1

1−2GM/R+GQ2/R2
dr2 . (65)

For this case, the divergence leads to the smaller Reissner–
Nordström radius

RRN =GM(1+
√
1−Q2/GM2) , (66)

which reduces to the Schwarzschild radius RS for Q =
0. The temperature of the Hawking radiation now be-
comes [37, 56]

TBH(M,Q) = TBH(M, 0)

{
4
√
1−Q2/GM2

(1+
√
1−Q2/GM2)2

}
;

(67)

its functional form is illustrated in Fig. 9. We note that
with increasing charge, the Coulomb repulsion weakens
the gravitational field at the event horizon and hence de-
creases the temperature of the corresponding quantum ex-
citations. As Q2→ GM2, the gravitational force is fully
compensated and there is no more Hawking radiation.
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Fig. 9. Radiation temperature for a charged black hole

In a similar way, the effect of the angular momentum of
a rotating black hole can be incorporated. It is now the cen-
tripetal force that counteracts the gravitational attraction
and hence reduces its strength. The resulting Kerr met-
ric must take into account that in this case the rotational
symmetry is reduced to an axial symmetry, and, with θ de-
noting the angle relative to the polar axis θ = 0, it is (at
fixed longitude) given by

ds2 =

(
1−

2GMR

R2+ j2 cos2 θ

)
dt2−

R2+ j2 cos2 θ

R2−2GMR+ j2
dr2

− (R2+ j2 cos2 θ)dθ2 . (68)

The angular momentum of the black hole is here specified
by the parameter j = J/M ; for a= 0, we again recover the
Schwarzschild case. The general situation is now somewhat
more complex, since (68) leads to two different divergence
points. The solution

RK =GM(1+
√
1− j2/(GM)2) (69)

defines the actual event horizon, corresponding to absolute
confinement. But the resulting black hole is now embedded
in a larger ellipsoid,

RE =GM(1+
√
1− [j2/(GM)2] cos2 θ) , (70)

as illustrated in Fig. 10. The two surfaces touch at the
poles, and the region between them is denoted as the er-
gosphere. Unlike the black hole proper, communication be-
tween the ergosphere and the outside world is possible. Any

Fig. 10. Geometry of a rotating black hole

object in the ergosphere will, however, suffer from the ro-
tational drag of the rotating black hole and thereby gain
momentum. We shall return to this shortly; first, however,
we note that the temperature of the Hawking radiation
from a rotating black hole becomes

TBH(M,J) = TBH(M, 0)

{
2
√
1− j2/(GM)2

1+
√
1− j2/(GM)2

}
.

(71)

For a non-rotating black hole, with j = 0, this also reduces
to the Hawking temperature for the Schwarzschild case.
To illustrate the effect of the ergosphere, imagine ra-

diation from a Schwarzschild black hole emitted radially
outward from the event horizon. In the case of a Kerr black
hole, such an emission is possible only along the polar axis;
for all other values of θ, the momentum of the emitted ra-
diation (even light) will increase due to the rotational drag
in the ergosphere. This effect ceases only once the radiation
leaves the ergosphere. Since the amount of drag depends
on θ, the momentum of the radiation emitted from a rotat-
ing black hole, as measured at large distances, will depend
on the latitude at which it is emitted and increase from pole
to equator.
Finally, for completeness, we note that for black holes

with both spin and charge (denoted as Kerr–Newman), the
event horizon is given by

RKN =GM(1+
√
1− [Q2/GM2]− [j2/(GM)2]) ,

(72)

and the radiation temperature becomes [37, 56]

TBH(M,Q, J) = TBH(M, 0, 0)

×

{
4
√
1− (GQ2+ j2)/(GM)2

(1+
√
1− (GQ2+ j2)/(GM)2)2+ j2/(GM)2

}
.

(73)

The decrease of TBH for Q 
= 0, J 
= 0 expresses the fact
that both the Coulomb repulsion and the rotational force
counteract the gravitational attraction, and if they win,
the black hole is dissolved.
The dependence of a black hole on its basic properties

M , Q and J is very similar to the dependence of a thermo-
dynamic system on a set of thermodynamic observables.
The first law of thermodynamics can be written as

dE = T dS+φdQ+ωdJ , (74)

expressing the variation of the energy with entropy S,
charge Q and spin J ; here φ denotes the electrostatic po-
tential per charge and ω the rotational velocity. The corres-
ponding relation in black hole thermodynamics becomes

dM = TBHdSBH+ΦdQ+ΩdJ , (75)

where the entropy SBH is defined as the area of the event
horizon,

SBH =
π
(
R2KN+ j

2
)

G
. (76)
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The temperature is given by (73), and

Φ=
4πQRRN
GSBH

, Ω =
4πa

SBH
(77)

specify the electrostatic potential Φ and the rotational
velocity Ω.
The considerations of this section were for spherical

black holes. As seen above, such objects are in fact equiva-
lent to uniformly accelerating systems. An application to
actual high energy collisions involves a further assumption.
Thermal Hawking–Unruh radiation arises already from
a singleQQ̄ system, as seen above in the discussion of e+e−

annihilation. If we treat the systems produced in heavy
ion collisions as black holes of an overall baryon number
and/or an overall spin, we are assuming that the collision
leads to a large-scale collective system, in which each ac-
celerating parton is affected by the totality of the other
accelerating partons. This assumption clearly goes beyond
our event horizon conjecture and, in particular, it need not
be correct in order to obtain thermal hadron production.

6 Baryon density and angular momentum

6.1 Vacuum pressure and baryon repulsion

We nowwant to consider the extension of chargedblackhole
physics to color confinement in the case of collective sys-
temswith a net baryonnumber. In (67) we had seen that the
reduction of the gravitational attraction byCoulomb repul-
sion in a charged black hole modifies the event horizon and
hence in turn also the temperature of Hawking radiation.
The crucial quantity here is the ratioQ2/GM2 of the repul-
sive overall Coulomb force,Q2/R2, to the attractive overall
gravitational force,GM2/R2, at the horizon.
In QCD, we have a “white” hole containing colored

quarks, confined by chromodynamic forces or, equivalently,
by the pressure of the physical vacuum. If the system has
a non-vanishing overall baryon number, the baryon num-
ber dependent interaction will also affect the forces at the
event horizon. The simplest instance of such a force is
the repulsion between quarks due to Fermi statistics, but
more generally, there will be repulsive effects of the type
present in cold dense baryonic matter, such as neutron
stars. The resulting pressure will modify the confinement
horizon and hence lead to a corresponding modification of
the Hawking–Unruh temperature of hadronization.
By using the conjectured correspondence between black

hole thermodynamics and the thermodynamics of confined
color charges, we translate black hole mass, charge and
gravitational constant into white hole energy, net baryon
number and string tension,

{M,Q,G}↔ {E,B, 1/2σ} . (78)

Hence (67) leads us to the relation

TQ(B) = TQ(B = 0)

{
4
√
1−2σB2/E2

(1+
√
1−2σB2/E2)2

}
; (79)

for the dependence of the hadronization temperature on
the ratio of net baryon number B and energy E, with
TQ(B = 0) given by (58). Its functional form is the same as
that illustrated in Fig. 9.
It would be interesting to test the prediction (79)

against the experimental data; one could identify B with
the net baryon number per unit rapidity dNB/dy and E
with the total transverse energy per unit rapidity dET/dy.
The reduction of the hadronization temperature with
baryon number could thus occur in two ways. A sufficient
decrease of the collision energy, e.g. from peak SPS to AGS
energy, will strongly reduce dET/dy, while dNB/dy is
not affected as much. This leads to the known decrease of
T (µB) with increasing µB [61], and it will be interesting
to see if the form (79) agrees with the observed behavior.
A second, novel possibility would be to consider hadro-
chemistry as a function of rapidity. At peak SPS energy,
dNB/dy remains essentially constant up to about y = 2,
while dET/dy drops by more than a factor of two from
y = 0 to y = 2 [62]. A similar behavior occurs at still lower
collision energies. Hence it would seem worthwhile to check
if an abundance analysis at large y indeed shows the ex-
pected decrease of the hadronization temperature.

6.2 Angular momentum and non-central collisions

The dependence of Hawking radiation on the angular mo-
mentum of the emitting system introduces another inter-
esting aspect for the “white hole evaporation” we have
been considering. Consider a nucleus–nucleus collision at
non-zero impact parameter b. If the interaction is of col-
lective nature, the resulting interaction system may have
some angular momentum orthogonal to the reaction plane
(see Fig. 11). In central collisions, this will not be the case,
nor for extremely peripheral ones, where one expects es-
sentially just individual nucleon–nucleon collisions without
any collective effects.
If it possible to consider a kinematic region in which

the interacting system does have an overall spin, then
the resulting Hawking radiation temperature should be
correspondingly reduced, as seen in (71). The effect is
not so easily quantified, but simply a reduction of the
hadronization temperature for non-central collisions would
be quite indicative. Such a reduction could appear only in
the temperature determined by the relative abundances,
since, as we shall see shortly, the transverse momentum

Fig. 11. Rotating interaction region in non-central AA
collision
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Fig. 12. Transverse plane view
of a non-central AA collision

spectra should show modifications due to the role of the
ergosphere.
We next turn to the momentum spectrum of the Hawk-

ing radiation emitted from a rotating white hole. As dis-
cussed in Sect. 4, such radiation will exhibit an azimuthal
asymmetry due to the presence of the ergosphere, which
by its rotation will affect the momentum spectrum of any
passing object. At the event horizon, the momentum of
all radiation is determined by the corresponding Hawking
temperature (71); but the passage of the ergosphere adds
rotational motion to the emerging radiation and hence in-
creases its momentum. As a result, only radiation emitted
directly along the polar axis will have momenta as speci-
fied by the Hawking temperature; with increasing latitude
θ (see Fig. 12a), the rotation will increase the radiationmo-
mentum up to a maximum value in the equatorial plane.
Hawking radiation from a rotating source thus leads for

nuclear collisions quite naturally to what in hydrodynamic
studies is denoted as elliptic flow. It is interesting to note
that both scenarios involve collective effects: while in hy-
drodynamics, it is assumed that non-central collisions lead
to an azimuthally anisotropic pressure gradient, we have
here assumed that such collisions lead to an overall angular
momentum of the emitting system.
Concluding this section we emphasize that the results

obtained here for the Hawking temperatures of systems
with finite baryon density or with an effective overall spin
depend crucially on the assumption of collectivity. If the
various nucleon–nucleon interactions in a heavy ion col-
lision do not result in sufficiently collective behavior, the
corresponding modifications of Tq do not apply. In the case
of black holes with spin, we moreover have no way to re-
late in a quantitative way centrality and overall spin. Both
cases do show, however, that such extensions lead to quali-
tatively reasonable modifications.

7 Temperature and acceleration limits

We have seen that the underlying confinement dynamics of
high energy hadron collisions and e+e− annihilation led to
a limit on the acceleration (or the corresponding decelera-
tion) in the self-similar hadronization cascade – a limit that
can be specified in terms of the string tension. In turn, this

led to a limiting Unruh hadronization temperature,

TQ �

√
σ

2π
. (80)

We emphasize that a Hawking–Unruh temperature as such
can a priori have any value; it is the universal limit on the
acceleration that leads to a universal temperature for the
emitted hadron radiation.
In the study of strongly interacting matter, tempera-

ture limits are well known and arise for an ideal gas of dif-
ferent composite constituents (“resonances” or “fireballs”
of varying massM), if the composition law provides a suf-
ficiently fast increase of the degeneracy ρ(M) with M . If
the number of states of a constituent of mass M grows
exponentially,

ρ(M)∼M−a exp{bM} , (81)

with constants a and b, then the grand canonical partition
function for an ideal gas in a volume V ,

Z(T, V ) =
∑
N

1

N !

×

[
V

(2π)3

∫
dMρ(M)

∫
d3p exp

{
−
√
p2+M2/T

}]N
,

(82)

diverges for

T > TH ≡ 1/b , (83)

so that the Hagedorn temperature TH [26, 27] constitutes
an upper limit for the temperature of hadronic matter.
In the dual resonance model [63, 64], the resonance

composition pattern is governed by linearly rising Regge
trajectories,

α′M2n = n+α0 , n= 1, 2, . . . , (84)

in terms of the universal Regge slope α′ � 1 GeV−2 and
a constant (of order unity) specifying the family (π, ρ, . . . ).
For an ideal resonance gas in D−1 space and one time di-
mension, one then obtains [65]

a=
1

2
(D+1) , b= 2π

√
Dα′

6
, (85)
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leading to the temperature limit

TR =
1

2π

√
6

α′D
. (86)

In string theory, the Regge resonance pattern is replaced
by string excitation modes, retaining the same underlying
partition structure, with α′ = 1/2πσ relating Regge slope
and string tension. Hence we get

TR =

√
6σ

2πD
(87)

for the corresponding limiting temperature. For D = 4,
this coincides with (1) from [23, 24] and agrees within 20%
with the Unruh temperature (80) determined by the lowest
string excitation alone (c0 = 1 in (58)).
Prior to the dual resonance model, Hagedorn had de-

termined the level density ρ(M) of fireballs composed
of fireballs, requiring the same composition pattern at
each level [26, 27]. The resulting bootstrap condition leads
to [66]

a= 3 , b= r0

[
3π

4
(2 ln 2−1)

]−1/3
� r0 , (88)

where r0 measures the range of the strong interaction.
With r0 � 1 fm, we thus get TH � 0.2 GeV for the limiting
temperature of hadronic matter. If we identify r0 with the
pair production separation xq obtained in (54), we get

TH =
1

xq
�

√
σ

2π
(89)

and hence again agreement with the hadronic Unruh tem-
perature (80).
Hadronic matter as an ideal gas of constituents with

self-similar composition spectra (“resonances of reso-
nances” or “fireballs of fireballs”) thus leads to an upper
limit of the temperature, because the level density of such
constituents increases exponentially. What does this have
to do with the limiting acceleration found in the qq̄ cascade
of e+e− annihilation?
To address this problem, it is useful to recall the under-

lying reason for the exponential increase of the level dens-
ity in the dual resonance model and the bootstrap model.
The common origin in both cases is a classical partition
problem, which in its simplest form [57] asks: how many
ways ρ(M) are there to partition a given integer M into
ordered combinations of integers? As example, we have for
M = 4 the partitions 4, 3+1, 1+3, 2+2, 2+1+1, 1+2+
1, 1+1+2, 1+1+1+1; thus here ρ(M = 4) = 8 = 2M−1.
It can be shown that this is generally valid, so that

ρ(M) =
1

2
exp{M ln 2} . (90)

For a “gas of integers”, T0 = 1/ ln 2 would thus become the
limiting temperature; the crucial feature in thermodynam-
ics is the exponential increase in the level density due to the
equal a priori weights given to all possible partitions.

Fig. 13. Fireball decay patterns

Returning now to the quark cascade in e+e− annihila-
tion, we note that the formwe have discussed above is a par-
ticular limiting case. We assumed that the color field of the
separating qq̄ excites in the first step one new pair from the
vacuum; in principle, though with much smaller probabil-
ity, it can also excite two or more. The same is true at the
next step, when the tunneling produces one further pair:
here also, there can be two or more. Thus the e+e− cascade
indeed provides a partition problem of the same kind.What
remains to be shownare the two specific features of our case:
that the dominant decay chain is one where in each step one
hadron is produced, which provides the constant decelera-
tion of the primary quark and antiquark.
The statistical bootstrap model as well as the dual res-

onance model leads to self-similar decay cascades, starting
from a massive fireball (or resonance), which decays into
further fireballs, and so on, until at the end one has light
hadrons. In Fig. 13a we illustrate such a cascade for the
case where the average number k̄ of constituents per step in
the decay (or composition) partition pattern

M →M11+M12+ . . .+M1k ;

M11→M21+M22+ . . .+M2k ; . . . (91)

is k = 3. In the statistical bootstrap model, k̄ can be can
be determined [67]; it is found that the crucial feature here
is the power term multiplying the exponential increase in
(81). For a < 5/2, the distribution in k is given by

F (k) =
(ln 2)k−1

(k−1)!
, (92)

so that the average becomes

k̄ = 1+2 ln2� 2.4 . (93)

The dominant decay (∼ 70%) is thus into two constituents,
with 24% three-body and 6% four-body decays. While in
general the fireball massM could decrease in each step by
M/k, i.e., by an amount depending onM , the case a < 5/2
is found to be dominated by one heavy and one soft light
hadron,

M →M1+h1 ; M1→M2+h2 ; . . . (94)

where hi denotes final hadrons; the pattern is shown in
Fig. 13b. Moreover, the three- and four-body decays also
lead to one heavy state plus soft light hadrons. The decay
thus provides a uniform decrease of the fireball mass by the
average hadron mass or transverse energy.
We therefore conclude that the hadronization pattern

we have obtained for e+e− annihilation is indeed also con-
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nected to the same partition problem as the one leading to
exponential level densities.

8 Stochastic versus kinetic thermalization

In statistical mechanics, a basic topic is the evolution of
a system of many degrees of freedom from non-equilibrium
to equilibrium. Starting from a non-equilibrium initial
state of low entropy, the system is assumed to evolve as
a function of time through collisions to a time-independent
equilibrium state of maximum entropy. In other words,
the system loses the information about its initial state
through a sequence of collisions and thus becomes thermal-
ized. In this sense, thermalization in heavy ion collisions
was studied as the transition from an initial state of two
colliding beams of “parallel” partons to a final state in
which these partons have locally isotropic distributions.
This “kinetic” thermalization requires a sufficient density
of constituents, sufficiently large interaction cross sections,
and a certain amount of time.
From such a point of view, the observation of thermal

hadron production in high energy collisions, in particular in
e+e− and pp interactions, is a puzzle: how could these sys-
tems ever “have reached” thermalization? Already Hage-
dorn [68] had therefore concluded that the emitted hadrons
were “born in equilibrium”.Given an exponentially increas-
ing resonancemass spectrum, it remained unclear why colli-
sions should result in a thermal system.
Hawking radiation provides a stochastic rather than

kinetic approach to equilibrium, with a randomization es-
sentially provided by the quantum physics of the Einstein–
Podolsky–Rosen effect. The barrier to information trans-
fer due to the event horizon requires that the resulting
radiation states excited from the vacuum are distributed
according to maximum entropy, with a temperature de-
termined by the strength of the “confining” field. The en-
semble of all produced hadrons, averaged over all events,
then leads to the same equilibrium distribution as obtained
in hadronic matter by kinetic equilibration. In the case of
a very high energy collisionwith a high averagemultiplicity
already one event can provide such equilibrium; because of
the interruption of information transfer at each of the suc-
cessive quantum color horizons, there is no phase relation
between two successive production steps in a given event.
The destruction of memory, which in kinetic equilibration
is achieved through sufficiently many successive collisions,
is here automatically provided by the tunneling process.
So the thermal hadronic final state in high energy col-

lisions is not reached through a kinetic process; it is rather
provided by successively throwing dice.

9 Conclusions

We have shown that quantum tunneling through the color
confinement horizon leads to thermal hadron production in
the form of Hawking–Unruh radiation. In particular, this
implies the following.

– The radiation temperature TQ is determined by the
transverse extension of the color flux tube, giving

TQ �

√
σ

2π
, (95)

in terms of the string tension σ.
– The multiplicity ν(s) of the produced hadrons is ap-
proximately given by the increase of the flux tube thick-
ness with string length, leading to

ν(s) � ln
√
s , (96)

where
√
s denotes the CMS collision energy. Parton

evolution and gluon saturation will, however, increase
this, as will early hard production. The universality of
the resulting abundances is, however, not affected.
– The temperature of Hawking radiation can in gen-
eral depend on the charge and the angular momen-
tum of the emitting system. The former here provides
a baryon number dependence of the hadronization tem-
perature and predicts a decrease of TQ for sufficiently
high baryon density. The latter provides the basis for
the possibility of elliptic flow and of a dependence of TQ
on the centrality of AA collisions.
– The limiting temperature obtained in the statistical
bootstrap and the dual resonance or string model arises
from a self-similar composition pattern leading to an
exponentially growing level density. We find that the
underlying partition problem also leads to the cascade
form obtained for hadron emission in high energy col-
lisions, so that the dynamic and the thermodynamic
limits have the same origin.
– In statistical QCD, thermal equilibrium is reached ki-
netically from an initial non-equilibrium state, with
memory destruction through successive interactions
of the constituents. In high energy collisions, tunnel-
ing prohibits information transfer and hence leads to
stochastic production, so that we have a thermal distri-
bution from the outset.

We close with a general comment. In astrophysics,
Hawking–Unruh radiation has so far never been observed.
The thermal hadron spectra in high energy collisions may
thus indeed be the first experimental instance of such radi-
ation, though in strong interaction instead of gravitation.
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